Annak érdekében, hogy Önnek a legjobb élményt nyújtsuk "sütiket" használunk honlapunkon. Az oldal használatával Ön beleegyezik a "sütik" használatába.

Notes on the lattice of fuzzy rough sets with crisp reference sets

  •  Minősített cikkek
  • 2023-02-02 11:45:00
Since the theory of rough sets was introduced by Zdzislaw Pawlak, several approaches have been proposed to combine rough set theory with fuzzy set theory. In this paper, we examine one of these approaches, namely fuzzy rough sets with crisp reference sets, from a lattice-theoretic point of view. We connect the lower and upper approximations of a fuzzy relation R to the approximations of the core and support of R. We also show that the lattice of fuzzy rough sets corresponding to a fuzzy equivalence relation R and the crisp subsets of its universe is isomorphic to the lattice of rough sets for the (crisp) equivalence relation E, where E is the core of R. We establish a connection between the exact (fuzzy) sets of R and the exact (crisp) sets of the support of R.

A teljes cikk innen tölthető le.

 

 

Hivatkozás

MLA: Gégény, Dávid, László Kovács, and Sándor Radeleczki. "Notes on the lattice of fuzzy rough sets with crisp reference sets." International Journal of Approximate Reasoning 126 (2020): 124-132.

APA:  Gégény, D., Kovács, L., & Radeleczki, S. (2020). Notes on the lattice of fuzzy rough sets with crisp reference sets. International Journal of Approximate Reasoning126, 124-132.

ISO690: GÉGÉNY, Dávid; KOVÁCS, László; RADELECZKI, Sándor. Notes on the lattice of fuzzy rough sets with crisp reference sets. International Journal of Approximate Reasoning, 2020, 126: 124-132.

BibTeX:

@article{gegeny2020notes,
  title={Notes on the lattice of fuzzy rough sets with crisp reference sets},
  author={G{'e}g{'e}ny, D{'a}vid and Kov{'a}cs, L{'a}szl{'o} and Radeleczki, S{'a}ndor},
  journal={International Journal of Approximate Reasoning},
  volume={126},
  pages={124--132},
  year={2020},
  publisher={Elsevier}
}

 

 

Megosztás