Annak érdekében, hogy Önnek a legjobb élményt nyújtsuk "sütiket" használunk honlapunkon. Az oldal használatával Ön beleegyezik a "sütik" használatába.

Neutrality of Vehicle Routing Problem

  •  Minősített cikkek
  • 2023-02-02 13:05:00
Vehicle Routing is a highly investigated problem in the field of logistics, informatics, management, and engineering. Several Vehicle Routing Problem variants have appeared since the first paper was published in 1959 by Dantzig and Ramster. In this paper, the neutrality analysis of a complex Vehicle Routing Problem is presented. Neutrality analysis is a special method in the general fitness landscape analysis. The fitness landscape analysis is aimed at the examination of the complexity analysis in regard to the objective function of the optimization problem including the efficiency of the representation space and the operators. In the neutrality analysis, we select the neighbors of the solutions that are closest to them. In this paper, we present the analysis of four neighborhood operators: the 2-opt, partially matched crossover, order crossover and the cycle crossover. Based on the performed numerical analysis, the 2-opt and partially matched crossover methods dominate the other operators.

A teljes cikk innen tölthető le.

 

 

Hivatkozás

MLA: Agárdi, Anita, László Kovács, and Tamás Bányai. "Neutrality of Vehicle Routing Problem." International Journal of Performability Engineering 17.10 (2021).

APA:  Agárdi, A., Kovács, L., & Bányai, T. (2021). Neutrality of Vehicle Routing Problem. International Journal of Performability Engineering17(10).

ISO690: AGÁRDI, Anita; KOVÁCS, László; BÁNYAI, Tamás. Neutrality of Vehicle Routing Problem. International Journal of Performability Engineering, 2021, 17.10.

BibTeX:

@article{agardi2021neutrality,
  title={Neutrality of Vehicle Routing Problem.},
  author={Ag{'a}rdi, Anita and Kov{'a}cs, L{'a}szl{'o} and B{'a}nyai, Tam{'a}s},
  journal={International Journal of Performability Engineering},
  volume={17},
  number={10},
  year={2021}
}

 

 

Megosztás