Annak érdekében, hogy Önnek a legjobb élményt nyújtsuk "sütiket" használunk honlapunkon. Az oldal használatával Ön beleegyezik a "sütik" használatába.

A Hybrid Discrete Bacterial Memetic Algorithm with Simulated Annealing for Optimization of the Flow Shop Scheduling Problem

  •  Minősített cikkek
  • 2023-02-02 13:20:00
This paper deals with the flow shop scheduling problem. To find the optimal solution is an NP-hard problem. The paper reviews some algorithms from the literature and applies a benchmark dataset to evaluate their efficiency. In this research work, the discrete bacterial memetic evolutionary algorithm (DBMEA) as a global searcher was investigated. The proposed algorithm improves the local search by applying the simulated annealing algorithm (SA). This paper presents the experimental results of solving the no-idle flow shop scheduling problem. To compare the proposed algorithm with other researchers’ work, a benchmark problem set was used. The calculated makespan times were compared against the best-known solutions in the literature. The proposed hybrid algorithm has provided better results than methods using genetic algorithm variants, thus it is a major improvement for the memetic algorithm family solving production scheduling problems.

A teljes cikk innen tölthető le.

 

 

Hivatkozás

MLA: Agárdi, Anita, et al. "A Hybrid Discrete Bacterial Memetic Algorithm with Simulated Annealing for Optimization of the Flow Shop Scheduling Problem." Symmetry 13.7 (2021): 1131.

APA:  Agárdi, A., Nehéz, K., Hornyák, O., & Kóczy, L. T. (2021). A Hybrid Discrete Bacterial Memetic Algorithm with Simulated Annealing for Optimization of the Flow Shop Scheduling Problem. Symmetry13(7), 1131.

ISO690: AGÁRDI, Anita, et al. A Hybrid Discrete Bacterial Memetic Algorithm with Simulated Annealing for Optimization of the Flow Shop Scheduling Problem. Symmetry, 2021, 13.7: 1131.

BibTeX:

@article{agardi2021hybrid,
  title={A Hybrid Discrete Bacterial Memetic Algorithm with Simulated Annealing for Optimization of the Flow Shop Scheduling Problem},
  author={Ag{'a}rdi, Anita and Neh{'e}z, K{'a}roly and Horny{'a}k, Oliv{'e}r and K{'o}czy, L{'a}szl{'o} T},
  journal={Symmetry},
  volume={13},
  number={7},
  pages={1131},
  year={2021},
  publisher={MDPI}
}

 

 

Megosztás