Annak érdekében, hogy Önnek a legjobb élményt nyújtsuk "sütiket" használunk honlapunkon. Az oldal használatával Ön beleegyezik a "sütik" használatába.
Share/Bookmark
  • ERPA Cikkek
  • 2022-11-19 19:05:00

Process Mining of Parallel Sequences with Neural Network Technologies

Process Mining is an important tool for automatic discovery of workflow process schemes. Dominating process mining technologies use either automaton-based engines or neural network engines. The main benefits of the machine learning based methods are the time and scale efficiency, but they have still some limitations considering schema flexibility. The paper introduces a novel approach for mining parallel sequences which is a hard problem for current neural network engines. The performed analysis and test results show that the proposed model is able to induce good quality schema, in many cases in better quality than the base methods.

A teljes cikk innen tölthető le

 

 

Hivatkozás

MLA: Kovács, László, Baksáné Varga, Erika and Mileff, Péter. Process Mining of Parallel Sequences with Neural Network Technologies. In Proceedings of 16th International Conference on Interdisciplinarity in Engineering (INTER-ENG 2022), Springer.

APA: Kovács, L., Baksáné Varga, E., & Mileff, P.  Process Mining of Parallel Sequences with Neural Network Technologies. In Proceedings of 16th International Conference on Interdisciplinarity in Engineering (INTER-ENG 2022), Springer.

ISO690: KOVÁCS, László; BAKSÁNÉ VARGA, Erika; MILEFF, Péter. Process Mining of Parallel Sequences with Neural Network Technologies. In Proceedings of 16th International Conference on Interdisciplinarity in Engineering (INTER-ENG 2022), Springer.

BibTeX:

@article{kovacsprocess,
  title={Process Mining of Parallel Sequences with Neural Network Technologies.},
  author={Kovács, László, Baksáné Varga, Erika and Mileff, Péter},
  journal={n Proceedings of 16th International Conference on Interdisciplinarity in Engineering (INTER-ENG 2022), Springer},
  volume={},
  number={},
  pages={--},
  year={}
}