
APPLICATION STUDIES OF AUTOENCODERS

SAMAD DADVANDIPOUR

At this stage of the research we have illustrated two applications of autoencoders, with respect
medical and MNIST datasets in case of cancer and handwritten, where the aim is to detect the
applications Malignant or Benign.

1. Introduction

Autoencoders and their application in ANN

Autoencoder neural networks are unsupervised machine learning algorithms.
They apply backpropagation, setting the target values equal to the inputs. Thus,
they are algorithms similar to PCA but minimize the same objective function. An
autoencoder is a neural network whose target output is its input. Autoencoders
are pretty identical to PCA, but they are more flexible when compared to the
others. For example, autoencoders can represent linear and no-linear transfor-
mations in encoding, but PCA can perform the linear transformation.

Need for autoencoders

Data compression is a big topic used in computer vision, computer networks,
and many other applications. Now the point of the data compression is to con-
vert input into smaller representation data that we recreated to a degree of quality.
The small representation would be passed around, and when anyone needed the
original, they would reconstruct from the smaller representation.

An encoder also gives a representation as to the output of each layer, and
having multiple representations of different dimensions is always useful. So an
autoencoder could tell you make use of pre-trained layers from another model to
apply transfer to prime the encoder or the decoder; even though practical appli-
cations of autoencoders were pretty rare sometimes back today, data denoising
and dimensionality reduction for data visualization are considered as two main
interesting practical applications of autoencoders. With appropriate dimensiona-
lity sparsing constraints, autoencoders can learn data projection.

Descriptions

There are basically three main layers: the encoder, the coder, and the encoder.
The first component that is the encoder, is the part of the neural network that
compresses the input into latent space representation in a reduced dimension.
The compressed image typically looks garbled/distorted/mixed up, nothing like
the original image. The next component represents the latent space. Code is the

Application studies of Autoencoders
 149

part of the network that represents the compressed input fed to the decoder. The
third component is the decoder., which decodes the encoded image back to the
original dimension with close or same images. In fact, the decoded image is a
lossy reconstruction of the original image. It reconstructs the input from the la-
tent space representation.

The properties of autoencoders

They can only compress data similar to what they have been trained on and au-
toencoders that have been trained. Autoencoders are usually called lossy. It
means that the decompressed outputs are degraded contrasted to the original
inputs. Now, if you have appropriate training data, it is easy to train specialized
algorithms to work well on a particular input type.

Training autoencoders

It doesn't need any new engineering; furthermore, in almost all contents where
the autoencoder is used, the compression and decompression functions are car-
ried out with the neural network [17, 18] [19, 21].

Preprocessing before training

There are four hyperparameters that we need to set before training them.

1. The first one is the code size

The code size represents the number of nodes in the middle layer smaller size
results in more compression.

2. The second parameter is the number of layers.

Now the autoencoder can be as we want it to be. We may have two or more
layers in both the encoders and decoders without considering the input and out-
puts. Next is the loss function, so we either use mean squared error or binary
cross-entropy. Now, if the input values are in the range of 0 to 1, then we typically
use cross-entropy. Otherwise, we use the mean squared error.

3. The third parameter is the nodes number for each layer.

The number of nodes for each layer decreases with each subsequent layer of the
encoder and increases back in the encoder [18]. Also, the decoder is symmetric

150
Samad Dadvandipour

in terms of the layer structure, but this is unnecessary, and we have total control
over this parameter. The architecture of an autoencoder has a deeper insight with
a couple of layers between the input and output. The sizes of these layers are
smaller than the input layer.

Case study 1: Medical application of Autoencoder

Problem statement: Given the prostate cancer dataset, try to predict whether the
cancer is Malignant or Benign [5].

2. Summary of research results

Using the diagnosis and statistical dataset for prostate cancer, (Table 1 and 2),
we try to predict whether the cancer is Malignant or Benign. The application is
using the tensor flow matrix in this respect. Also Keras model used for the di-
mensional reduction.

Table 1. Dataset
id diagno-

sis_result
radius texture peri-

meter
area smooth-

ness
compact-

ness
symmetry fractal_

dimension

4 M 14 16 78 386 0.07 0.284 0.26 0.096999999
99999999

1 M 23 12 151 954 0.1430000
00000000

02

0.278 0.242 0.079

3 M 21 27 130 1203 0.125 0.16 0.207 0.06

5 M 9 19 135 1297 0.141 0.133 0.181000000
00000002

0.059000000
000000004

2 B 9 13 133 1326 0.1430000
00000000

02

0.079 0.181000000
00000002

0.057

As is shown in the above table, we have eight independent features and one de-
pendent feature (Diagnosis result), which are the number of features and the de-
scription of the dataset [4].

2.1. Required libraries:

import matplotlib.pyplot as plt

import numpy as np

import tensorflow as tf

from tensorflow.keras.models import Model, Sequential

from tensorflow.keras.layers import Dense, Flatten, Reshape

import pandas as pd

import random

from sklearn.preprocessing import StandardScaler

from sklearn.decomposition import PCA

import seaborn as sns

Application studies of Autoencoders
 151

Table. 2. Some statistical results of the dataset
index id diagno-

sis_result
radius tex-

ture
peri-
meter

area smooth-
ness

compact-
ness

sym-
metry

fractal_
dimen-

sion

count 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

mean 50.5 0.62 16.85 18.23 96.78 702.88 0.10273 0.1267 0.19317 0.064690
00000000

001

std 29.011
491975
882016

0.4878317
31214563

25

4.8790
937227
68149

5.1929
536563
27742

23.676
088606
80268

319.71
089465
580644

0.014641
7522547

9892

0.06114356
346775475

0.03078
503342
256237

7

0.008150
96821416

2219

min 1.0 0.0 9.0 11.0 52.0 202.0 0.07 0.038 0.135 0.053

25% 25.75 0.0 12.0 14.0 82.5 476.75 0.0935 0.0805 0.172 0.059000
00000000

0004

50% 50.5 1.0 17.0 17.5 94.0 644.0 0.102 0.1185 0.19 0.063

75% 75.25 1.0 21.0 22.25 114.25 917.0 0.111999
9999999

9999

0.157 0.209 0.069

max 100.0 1.0 25.0 27.0 172.0 1878.0 0.143000
0000000

0002

0.345 0.304 0.096999
99999999

999

We build an encoder to reduce the number of features from 8 to 2 and check
whether we can get the same results. Model architecture for encoder unit, dimen-
sions of original space = 8, latent space dimensions = 2.

2.2. The model architecture

Decoder unit architecture: Input dimensions = 2, reconstructed dimensions = 8

152
Samad Dadvandipour

Autoencoder architecture: Combining both encoder and decoder so, in this
model, both original dimensions and output or reconstructed dimensions should
be the same [1, 2, 3].

This is the dimension of the original space

input_dim = 8

This is the dimension of the latent space (encoding space)

latent_dim = 2

encoder = Sequential([

 Dense(128, activation='relu', input_shape=(input_dim,)),

 Dense(64, activation='relu'),

 Dense(32, activation='relu'),

 Dense(latent_dim, activation='relu'),

 #Dense(1, activation = 'sigmoid')

])

decoder = Sequential([

Dense(64, activation='relu', input_shape=(latent_dim,)),

 Dense(128, activation='relu'),

 Dense(256, activation='relu'),

 Dense(input_dim, activation=None)

])

autoencoder = Model(inputs=encoder.input, outputs=decoder(encoder.output))

autoencoder.compile(loss='mse', optimizer='adam')

Application studies of Autoencoders
 153

Our autoencoder is still untrained at this time. So let's try feeding it some in-
stances from the dataset to see how effectively it starts to reconstruct the fol-
lowing:

def plot_orig_vs_recon(title='', n_samples=3):

 fig = plt.figure(figsize=(10,6))

 plt.suptitle(title)

 for i in range(3):

 plt.subplot(3, 1, i+1)

 idx = random.sample(range(x_train.shape[0]), 1)

 plt.plot(autoencoder.predict(x_train[idx]).squeeze(), label='reconstructed' if i ==

0 else '')

 plt.plot(x_train[idx].squeeze(), label='original' if i == 0 else '')

 fig.axes[i].set_xticklabels(metric_names)

 plt.xticks(np.arange(0, 10, 1))

 plt.grid(True)

 if i == 0: plt.legend();

plot_orig_vs_recon('Before training the Autoencoder')

154
Samad Dadvandipour

Figure 1. Illustration of original data taken from the prostate

As we can depict from the above graph, there is a lot of difference between the
original and reconstructed data. We say that both original and reconstructed data
are similar if the graph lines overlap. Now we will train our autoencoder with the
following parameters [2, 3]:

1. Loss = MSE
2. Optimizer = Adam
3. Epochs = 5000 and
4. Batch size = 32

After training the autoencoder, the loss that occurred is given as:

#After training the encoder

model_history = autoencoder.fit(x_train, x_train, validation_data = (x_test, x_te

st), epochs=5000, batch_size=32, verbose=0)

plt.plot(model_history.history["loss"])

plt.title("Loss vs. Epoch")

plt.ylabel("Loss")

plt.xlabel("Epoch")

plt.grid(True)

plt.savefig("loss vs Epochs")

Application studies of Autoencoders
 155

Figure 2. training result based on given data, based on loss Vs. Given epoch

Our model converged. It worked, and now we check the reconstruction on a
trained autoencoder:

Figure 3. Illustration of overlapping the original data after training, the training detects

the given cancerous data

3. Conclusion

In the digital era, millions of bytes of data are exchanged every day on the inter-
net. Although storing and analyzing this humongous data is challenging, it also

156
Samad Dadvandipour

reduces energy consumption. Autoencoder is a special unsupervised or specifi-
cally self-supervised neural network consisting of an encoder and decoder unit.
First, it starts widespread, then its units/connections are pushed closer to the
center and spread out again. This architecture makes the autoencoder compress
the training data’s informational content, encoding it in a low-dimensional space.
In the case of the prostate in general, a similar process happens. Still, when the
prostate is under tumor type, ML can diagnose whether the cancer is Malignant
(bad-natured) or Benign (good-natured). We used an autoencoder model similar
to the prostate with given data for both cases in this example. After considering
the critical eight features by the autoencoder, the original and reconstructed lines
overlap almost completely, which tells us our model worked perfectly, i.e., it re-
constructed the input data of 8 dimensions to the reconstructed output of 8 di-
mensions using the latent space of two sizes. As a result, the reconstructed values
are almost identical to the originals!

Let us now examine the latent space. We’ll use a 2D scatterplot to visualize it
because it’s two-dimensional. The 8-dimensional data is projected onto a plane
in this way.

Figure 4. Illustration of data dimensions

encoded_x_train = encoder(x_train)

plt.figure(figsize=(6,6))

plt.scatter(encoded_x_train[:, 0], encoded_x_train[:, 1], alpha=.8)

plt.xlabel('Latent Dimension 1')

plt.ylabel('Latent Dimension 2');

Application studies of Autoencoders
 157

The decoder needs this 2D imprint to reconstruct the original 8-dimensional
space. However, there are a lot of points crammed into the bottom left corner.
This is because we want each class's data points to create unique clusters in a
classification situation.

Case study 2: Handwritten Application of Autoencoder

In the MNIST dataset there are 60.000 examples in the training set and 10.000
samples in the test set. An image of a handwritten 28x28 grayscale digit from 0
to 9 is used in each case. We preprocessed the input data to be presentable for
the encoder model [16, 17] [9, 10].

4. Summary of research results

4.1. Application

Input data:

Figure 5. Number of the sample were taken for training (15 cm × 4 cm)

Autoencoder encoder architecture, image size = 28 * 28 and dimension of latent
space = 2.

158
Samad Dadvandipour

4.2. The applied Model

Application studies of Autoencoders
 159

We’ll design a custom callback by subclassing the tf.Keras.callback.Callback. To
visualize the autoencoder, how it builds up the latent space representation as we
train it. We will override the function or method on_epoch_begin (self, epoch,
logs = None), which is called at the start of the epoch during the training phase;
we will extract the representation of the latent space by looking up in the code
and plotting it. There is a method in the Keras layer to get the output of an
intermediate layer-output. We will train our model on the following hyperparam-
eters [7, 15] [16, 17]:

1. Loss = Binary cross entropy.
2. Optimizer = Adam.
3. Epochs = 12 (number where each latent represented image trains the 32 given

dataset pictures) for the decoding parts.
4. Batch size = 32 the sample pictures.

The evolution of latent space representation as the autoencoder is trained, start-
ing at the top left with an untrained state and finishing with a wholly trained state
at the bottom right. All of the original space data is projected on the same point
of the latent space before the first epoch. However, when the autoencoder learns,
the points associated with various classes begin to decouple.

160
Samad Dadvandipour

Figure 6. The latent representation of MNIST

Loss vs. epochs: to check whether our model converges or not.

Application studies of Autoencoders
 161

Figure 7. Loss function, which shows a convergence of the model

Encoder Architecture

Decoder Architecture

162
Samad Dadvandipour

Figure 8. Training Vs. Validation accuracy

Figure 9. Original Validation Vs. reconstructed data

Application studies of Autoencoders
 163

4.3. Autoencoder as Generative model using MNIS dataset

We use an autoencoder as a generative model. We can say when the autoencoder
constructs a latent representation of the input data set, we use it as input. Then
the decoder takes a sample of a random point of the latent space and produces a
synthetic (fake) image [10, 11 and 8], [13, 14 and 12]. For example:

We may sample a random point of the latent space of the autoencoder model and
use it as input to the decoder to build a synthetic (fake) image. Once the autoen-
coder has generated a latent representation of the input data set. As an example,

Number of samples to generate = 40

Figure 10. Synthetic or fake images generated by the trained autoencoder

5. Conclusion

This study has been carried out for dimensionality reduction using autoencoders
for handwritten detection using the MNIST dataset. There are 60,000 examples
in the training set and 10,000 samples in the test set. 28 * 28 grayscale image of a
handwritten digit from 0 to 9 is used in each case. We preprocessed the input
data to be presentable for the encoder model. The input image is 28 * 28, so it is

164
Samad Dadvandipour

converted to 784 inputs. The dense 192 activations sigmoid function is the num-
ber of inputs neurons in the first layer. The dropout is 0.3 used for optimization.
The output of neurons whose value is less than 0.3 is not activated. The dense
64 activation sigmoid is the number of inputs in the second layer. The dropout
0.4 was used for optimization; the output of neurons whose value is less than 0.4
are not activated.

References

[1] Patel, M. I., Suthar, S. and Thakar, J. (2019). Survey on image compression us-
ing machine learning and deep learning.
https://doi.org/10.1109/ICCS45141.2019.9065473

[2] Bai, H., Zhang, M., Liu, M., Wang, A. and Zhao, Y. (2014). Two-stage mul-
tiview image compression using interview SIFT matching.
https://doi.org/10.1109/DCC.2014.14

[3] Zhang, Q., Liu, D. and Li, H. (2018). Deep network-based image coding
for simultaneous compression and retrieval.
https://doi.org/10.1109/ICIP.2017.8296312

[4] https://www.kaggle.com/sajidsaifi/prostate-cancer.

[5] Abbasi, A. A., Hussain, L., Awan, I. A., Abbasi, I., Majid, A., Nadeem,
M. S. A., & Chaudhary, Q. A. (2020). Detecting prostate cancer using a
deep learning convolution neural network with the transfer learning ap-
proach. Cognitive Neurodynamics, 14 (4), pp. 523–533.

[6] Iqbal, S., Siddiqui, G. F., Rehman, A., Hussain, L., Saba, T., Tariq, U., &
Abbasi, A. A. (2021). Prostate Cancer Detection Using Deep Learning and Tra-
ditional Techniques. https://ieeexplore.ieee.org/document/9349466

[7] Rippel, O. and Bourdev, L. (2017). Real-time adaptive image compression.
Proceedings of the 34th International Conference an Machine Learning, Sydney, Aus-
tralia, PMLR 70. http://proceedings.mlr.press/v70/rippel17a/rippel17a.pdf

[8] Choi, Y., Kang, D., Hwang, J. J. and Rhee, K. H. (2018). JPEG Compression
Detection Based on Edge-Corner Features Using SVM.
https://doi.org/810.1109/MLDS.2017.25

[9] Makar, M., Chang, C. L., Chen, D., Tsai, S. S. and Girod, B. (2009). Com-
pression of image patches for local feature extraction.
https://doi.org/10.1109/ICASSP.2009.4959710

https://doi.org/10.1109/ICCS45141.2019.9065473
https://doi.org/10.1109/DCC.2014.14
https://doi.org/10.1109/ICIP.2017.8296312
https://www.kaggle.com/sajidsaifi/prostate-cancer
https://ieeexplore.ieee.org/document/9349466
https://doi.org/810.1109/MLDS.2017.25
https://doi.org/10.1109/ICASSP.2009.4959710

Application studies of Autoencoders
 165

[10] Robinson, J. and Kecman, V. (2003). Combining support vector machine
learning with the discrete cosine transform in image compression. IEEE
Trans. Neural Networks, https://doi.org/10.1109/TNN.2003.813842.

[11] Liu, X. and Yang, J. (2018). Fast and High Efficient Color Image Compression
Using Machine Learning.
https://doi.org/10.1109/IMCEC.2018.8469518

[12] Toderici, G. et al. (2017). Full resolution image compression with recurrent neural
networks. https://doi.org/10.1109/CVPR.2017.577

[13] Quijas, J. and Fuentes, O. (2014). Removing JPEG blocking artifacts using ma-
chine learning. https://doi.org/10.1109/SSIAI.2014.6806033

[14] Cavigelli, L., Hager, P. and Benini, L. (2017). CAS-CNN: A deep convolu-
tional neural network for image compression artifact suppression.
https://doi.org/1410.1109/IJCNN.2017.7965927

[15] https://en.wikipedia.org/wiki/MNIST_database

[16] https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/CallbackList

[17] Autoencoders. https://saivenkatsudarshanam1996.medium.com/autoencoders
-e42dc45b7bd0

[18] Applied Deep Learning. https://towardsdatascience.com/applied-deep-learning
-part-3-autoencoders-1c083af4d798

[19] Understand Autoencoders by implementing in TensorFlow. https://iq.openge-
nus.org/implementing-autoencoder-tensorflow/

[20] Building Autoencoders in Keras. https://blog.keras.io/building-autoencoders-
in-keras.html

[21] Autoencoders. https://towardsdatascience.com/autoencoders-bits-and-bytes-
of-deep-learning eaba376f23ad/

https://doi.org/10.1109/TNN.2003.813842
https://doi.org/10.1109/IMCEC.2018.8469518
https://doi.org/10.1109/CVPR.2017.577
https://doi.org/10.1109/SSIAI.2014.6806033
https://doi.org/1410.1109/IJCNN.2017.7965927
https://en.wikipedia.org/wiki/MNIST_database
https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/CallbackList
https://saivenkatsudarshanam1996.medium.com/autoencoders-e42dc45b7bd0
https://saivenkatsudarshanam1996.medium.com/autoencoders-e42dc45b7bd0
https://towardsdatascience.com/applied-deep-learning-part-3-autoencoders-1c083af4d798
https://towardsdatascience.com/applied-deep-learning-part-3-autoencoders-1c083af4d798
https://iq.opengenus.org/implementing-autoencoder-tensorflow/
https://iq.opengenus.org/implementing-autoencoder-tensorflow/
https://blog.keras.io/building-autoencoders-in-keras.html
https://blog.keras.io/building-autoencoders-in-keras.html
https://towardsdatascience.com/autoencoders-bits-and-bytes-of-deep-learning%20eaba376f23ad
https://towardsdatascience.com/autoencoders-bits-and-bytes-of-deep-learning%20eaba376f23ad

