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At this stage of the research we have illustrated two applications of autoencoders, with respect 
medical and MNIST datasets in case of cancer and handwritten, where the aim is to detect the  
applications Malignant or Benign.  
 
1. Introduction 

Autoencoders and their application in ANN 

Autoencoder neural networks are unsupervised machine learning algorithms. 
They apply backpropagation, setting the target values equal to the inputs. Thus, 
they are algorithms similar to PCA but minimize the same objective function. An 
autoencoder is a neural network whose target output is its input. Autoencoders 
are pretty identical to PCA, but they are more flexible when compared to the 
others. For example, autoencoders can represent linear and no-linear transfor-
mations in encoding, but PCA can perform the linear transformation. 
 
Need for autoencoders 

Data compression is a big topic used in computer vision, computer networks, 
and many other applications. Now the point of the data compression is to con-
vert input into smaller representation data that we recreated to a degree of quality. 
The small representation would be passed around, and when anyone needed the 
original, they would reconstruct from the smaller representation.  

An encoder also gives a representation as to the output of each layer, and 
having multiple representations of different dimensions is always useful. So an 
autoencoder could tell you make use of pre-trained layers from another model to 
apply transfer to prime the encoder or the decoder; even though practical appli-
cations of autoencoders were pretty rare sometimes back today, data denoising 
and dimensionality reduction for data visualization are considered as two main 
interesting practical applications of autoencoders. With appropriate dimensiona-
lity sparsing constraints, autoencoders can learn data projection. 

 
Descriptions 

There are basically three main layers: the encoder, the coder, and the encoder. 
The first component that is the encoder, is the part of the neural network that 
compresses the input into latent space representation in a reduced dimension. 
The compressed image typically looks garbled/distorted/mixed up, nothing like 
the original image. The next component represents the latent space. Code is the 
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part of the network that represents the compressed input fed to the decoder. The 
third component is the decoder., which decodes the encoded image back to the 
original dimension with close or same images.  In fact, the decoded image is a 
lossy reconstruction of the original image. It reconstructs the input from the la-
tent space representation.  
 
The properties of autoencoders  

They can only compress data similar to what they have been trained on and au-
toencoders that have been trained. Autoencoders are usually called lossy. It 
means that the decompressed outputs are degraded contrasted to the original 
inputs. Now, if you have appropriate training data, it is easy to train specialized 
algorithms to work well on a particular input type. 
 
Training autoencoders 

It doesn't need any new engineering; furthermore, in almost all contents where 
the autoencoder is used, the compression and decompression functions are car-
ried out with the neural network [17, 18] [19, 21]. 
 
Preprocessing before training 

There are four hyperparameters that we need to set before training them.  
 

1. The first one is the code size 
 
The code size represents the number of nodes in the middle layer smaller size 
results in more compression.  
 

2. The second parameter is the number of layers. 
 
Now the autoencoder can be as we want it to be. We may have two or more 
layers in both the encoders and decoders without considering the input and out-
puts. Next is the loss function, so we either use mean squared error or binary 
cross-entropy. Now, if the input values are in the range of 0 to 1, then we typically 
use cross-entropy. Otherwise, we use the mean squared error. 
 

3. The third parameter is the nodes number for each layer.  
 
The number of nodes for each layer decreases with each subsequent layer of the 
encoder and increases back in the encoder [18]. Also, the decoder is symmetric 
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in terms of the layer structure, but this is unnecessary, and we have total control 
over this parameter. The architecture of an autoencoder has a deeper insight with 
a couple of layers between the input and output. The sizes of these layers are 
smaller than the input layer. 
 

Case study 1: Medical application of Autoencoder 
 

Problem statement: Given the prostate cancer dataset, try to predict whether the 
cancer is Malignant or Benign [5]. 
 
2. Summary of research results 

Using the diagnosis and statistical dataset for prostate cancer, (Table 1 and 2), 
we try to predict whether the cancer is Malignant or Benign. The application is 
using the tensor flow matrix in this respect. Also Keras model used for the di-
mensional reduction.  

Table 1. Dataset 
id diagno-

sis_result 
radius texture peri-

meter 
area smooth-

ness 
compact-

ness 
symmetry fractal_ 

dimension 

4 M 14 16 78 386 0.07 0.284 0.26 0.096999999
99999999 

1 M 23 12 151 954 0.1430000
00000000

02 

0.278 0.242 0.079 

3 M 21 27 130 1203 0.125 0.16 0.207 0.06 

5 M 9 19 135 1297 0.141 0.133 0.181000000
00000002 

0.059000000
000000004 

2 B 9 13 133 1326 0.1430000
00000000

02 

0.079 0.181000000
00000002 

0.057 

 

As is shown in the above table, we have eight independent features and one de-
pendent feature (Diagnosis result), which are the number of features and the de-
scription of the dataset [4]. 
 
2.1. Required libraries:  

 

import matplotlib.pyplot as plt 

import numpy as np 

import tensorflow as tf 

from tensorflow.keras.models import Model, Sequential 

from tensorflow.keras.layers import Dense, Flatten, Reshape 

import pandas as pd 

import random 

from sklearn.preprocessing import StandardScaler 

from sklearn.decomposition import PCA 

import seaborn as sns 
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Table. 2. Some statistical results of the dataset 
index id diagno-

sis_result 
radius tex-

ture 
peri-
meter 

area smooth-
ness 

compact-
ness 

sym-
metry 

fractal_ 
dimen-

sion 

count 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

mean 50.5 0.62 16.85 18.23 96.78 702.88 0.10273 0.1267 0.19317 0.064690
00000000

001 

std 29.011
491975
882016 

0.4878317
31214563

25 

4.8790
937227
68149 

5.1929
536563
27742 

23.676
088606
80268 

319.71
089465
580644 

0.014641
7522547

9892 

0.06114356
346775475 

0.03078
503342
256237

7 

0.008150
96821416

2219 

min 1.0 0.0 9.0 11.0 52.0 202.0 0.07 0.038 0.135 0.053 

25% 25.75 0.0 12.0 14.0 82.5 476.75 0.0935 0.0805 0.172 0.059000
00000000

0004 

50% 50.5 1.0 17.0 17.5 94.0 644.0 0.102 0.1185 0.19 0.063 

75% 75.25 1.0 21.0 22.25 114.25 917.0 0.111999
9999999

9999 

0.157 0.209 0.069 

max 100.0 1.0 25.0 27.0 172.0 1878.0 0.143000
0000000

0002 

0.345 0.304 0.096999
99999999

999 

 
We build an encoder to reduce the number of features from 8 to 2 and check 
whether we can get the same results. Model architecture for encoder unit, dimen-
sions of original space = 8, latent space dimensions = 2. 
 
2.2. The model architecture 

 
 
Decoder unit architecture: Input dimensions = 2, reconstructed dimensions = 8 
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Autoencoder architecture: Combining both encoder and decoder so, in this 
model, both original dimensions and output or reconstructed dimensions should 
be the same [1, 2, 3]. 
 

 
 

 
 

 
 

 

# This is the dimension of the original space 

input_dim = 8 

 

# This is the dimension of the latent space (encoding space) 

latent_dim = 2 

encoder = Sequential([ 

    Dense(128, activation='relu', input_shape=(input_dim,)), 

    Dense(64, activation='relu'), 

    Dense(32, activation='relu'), 

    Dense(latent_dim, activation='relu'), 

    #Dense(1, activation = 'sigmoid') 

]) 

decoder = Sequential([ 

Dense(64, activation='relu', input_shape=(latent_dim,)), 

    Dense(128, activation='relu'), 

    Dense(256, activation='relu'), 

    Dense(input_dim, activation=None) 

]) 

autoencoder = Model(inputs=encoder.input, outputs=decoder(encoder.output)) 

autoencoder.compile(loss='mse', optimizer='adam') 
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Our autoencoder is still untrained at this time. So let's try feeding it some in-
stances from the dataset to see how effectively it starts to reconstruct the fol-
lowing: 
 

     

 
 

 

def plot_orig_vs_recon(title='', n_samples=3): 

    fig = plt.figure(figsize=(10,6)) 

    plt.suptitle(title) 

    for i in range(3): 

        plt.subplot(3, 1, i+1) 

   idx = random.sample(range(x_train.shape[0]), 1) 

        plt.plot(autoencoder.predict(x_train[idx]).squeeze(), label='reconstructed' if i == 

0 else '') 

        plt.plot(x_train[idx].squeeze(), label='original' if i == 0 else '') 

        fig.axes[i].set_xticklabels(metric_names) 

        plt.xticks(np.arange(0, 10, 1)) 

        plt.grid(True) 

        if i == 0: plt.legend(); 

plot_orig_vs_recon('Before training the Autoencoder') 
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Figure 1. Illustration of original data taken from the prostate  

 
As we can depict from the above graph, there is a lot of difference between the 
original and reconstructed data. We say that both original and reconstructed data 
are similar if the graph lines overlap. Now we will train our autoencoder with the 
following parameters [2, 3]: 
 

1. Loss = MSE 
2. Optimizer = Adam 
3. Epochs = 5000 and 
4. Batch size = 32  
 
After training the autoencoder, the loss that occurred is given as: 
 

 
 

 

#After training the encoder 

model_history = autoencoder.fit(x_train, x_train, validation_data = (x_test, x_te

st), epochs=5000, batch_size=32, verbose=0) 

plt.plot(model_history.history["loss"]) 

plt.title("Loss vs. Epoch") 

plt.ylabel("Loss") 

plt.xlabel("Epoch") 

plt.grid(True) 

plt.savefig("loss vs Epochs") 



Application studies of Autoencoders 
 155 

  
 

 
Figure 2. training result based on given data, based on loss Vs. Given epoch 

 
Our model converged. It worked, and now we check the reconstruction on a 
trained autoencoder: 

 
Figure 3. Illustration of overlapping the original data after training, the training detects  

the given cancerous data 
 
3. Conclusion 

In the digital era, millions of bytes of data are exchanged every day on the inter-
net. Although storing and analyzing this humongous data is challenging, it also 
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reduces energy consumption. Autoencoder is a special unsupervised or specifi-
cally self-supervised neural network consisting of an encoder and decoder unit. 
First, it starts widespread, then its units/connections are pushed closer to the 
center and spread out again. This architecture makes the autoencoder compress 
the training data’s informational content, encoding it in a low-dimensional space. 
In the case of the prostate in general, a similar process happens. Still, when the 
prostate is under tumor type, ML can diagnose whether the cancer is Malignant 
(bad-natured) or Benign (good-natured). We used an autoencoder model similar 
to the prostate with given data for both cases in this example. After considering 
the critical eight features by the autoencoder, the original and reconstructed lines 
overlap almost completely, which tells us our model worked perfectly, i.e., it re-
constructed the input data of 8 dimensions to the reconstructed output of 8 di-
mensions using the latent space of two sizes. As a result, the reconstructed values 
are almost identical to the originals! 

Let us now examine the latent space. We’ll use a 2D scatterplot to visualize it 
because it’s two-dimensional. The 8-dimensional data is projected onto a plane 
in this way. 

 

 
 

 
Figure 4. Illustration of data dimensions 

encoded_x_train = encoder(x_train) 

plt.figure(figsize=(6,6)) 

plt.scatter(encoded_x_train[:, 0], encoded_x_train[:, 1], alpha=.8) 

plt.xlabel('Latent Dimension 1') 

plt.ylabel('Latent Dimension 2'); 
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The decoder needs this 2D imprint to reconstruct the original 8-dimensional 
space. However, there are a lot of points crammed into the bottom left corner. 
This is because we want each class's data points to create unique clusters in a 
classification situation.  
 

Case study 2: Handwritten Application of Autoencoder 
 

In the MNIST dataset there are 60.000 examples in the training set and 10.000 
samples in the test set. An image of a handwritten 28x28 grayscale digit from 0 
to 9 is used in each case. We preprocessed the input data to be presentable for 
the encoder model [16, 17] [9, 10]. 
 
4. Summary of research results 

4.1. Application 

Input data:  
 

 
 

 
Figure 5. Number of the sample were taken for training (15 cm × 4 cm) 

 
Autoencoder encoder architecture, image size = 28 * 28 and dimension of latent 
space = 2. 
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4.2. The applied Model 
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We’ll design a custom callback by subclassing the tf.Keras.callback.Callback. To 
visualize the autoencoder, how it builds up the latent space representation as we 
train it. We will override the function or method on_epoch_begin (self, epoch, 
logs = None), which is called at the start of the epoch during the training phase; 
we will extract the representation of the latent space by looking up in the code 
and plotting it. There is a method in the Keras layer to get the output of an 
intermediate layer-output. We will train our model on the following hyperparam-
eters [7, 15] [16, 17]: 
 

1. Loss = Binary cross entropy. 
2. Optimizer = Adam. 
3. Epochs = 12 (number where each latent represented image trains the 32 given 

dataset pictures) for the decoding parts. 
4. Batch size = 32 the sample pictures. 
 

The evolution of latent space representation as the autoencoder is trained, start-
ing at the top left with an untrained state and finishing with a wholly trained state 
at the bottom right. All of the original space data is projected on the same point 
of the latent space before the first epoch. However, when the autoencoder learns, 
the points associated with various classes begin to decouple. 
 

 



160  
Samad Dadvandipour 

  
 

 
Figure 6. The latent representation of MNIST 

 
Loss vs. epochs: to check whether our model converges or not. 
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Figure 7. Loss function, which shows a convergence of the model 
 

Encoder Architecture 
 

 
 

Decoder Architecture 
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Figure 8. Training Vs. Validation accuracy 

 

 
 

 
 

Figure 9. Original Validation Vs. reconstructed data 
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4.3. Autoencoder as Generative model using MNIS dataset 

We use an autoencoder as a generative model. We can say when the autoencoder 
constructs a latent representation of the input data set, we use it as input. Then 
the decoder takes a sample of a random point of the latent space and produces a 
synthetic (fake) image [10, 11 and 8], [13, 14 and 12]. For example: 
 

 
 
We may sample a random point of the latent space of the autoencoder model and 
use it as input to the decoder to build a synthetic (fake) image. Once the autoen-
coder has generated a latent representation of the input data set. As an example, 
 
Number of samples to generate = 40 

 
 

Figure 10. Synthetic or fake images generated by the trained autoencoder 
 
 

5. Conclusion  

This study has been carried out for dimensionality reduction using autoencoders 
for handwritten detection using the MNIST dataset. There are 60,000 examples 
in the training set and 10,000 samples in the test set. 28 * 28 grayscale image of a 
handwritten digit from 0 to 9 is used in each case. We preprocessed the input 
data to be presentable for the encoder model. The input image is 28 * 28, so it is 



164  
Samad Dadvandipour 

  
 

converted to 784 inputs. The dense 192 activations sigmoid function is the num-
ber of inputs neurons in the first layer. The dropout is 0.3 used for optimization. 
The output of neurons whose value is less than 0.3 is not activated. The dense 
64 activation sigmoid is the number of inputs in the second layer. The dropout 
0.4 was used for optimization; the output of neurons whose value is less than 0.4 
are not activated. 
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